Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Aquabis(5-butylpyridine-2-carboxylato)zinc monohydrate

Yi-Wen Tao^a and Yun Wang^b*

^aSchool of Basic Science, Guangzhou Medical College, Guangzhou 510182, People's Republic of China, and ^bGuangdong Institute for Drug Control, Guangzhou 510180, People's Republic of China

Correspondence e-mail: yywentao@yahoo.com.cn

Received 26 May 2011; accepted 5 June 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.075; data-to-parameter ratio = 14.6.

In the title complex, $[Zn(C_{10}H_{12}NO_2)_2(H_2O)]\cdot H_2O$, the Zn^{II} ion is coordinated by two N and two O atoms from two 5-*n*-butylpyridine-2-carboxylato ligands and one O atom from a water molecule in a distorted square-pyramidal geometry. In the crystal, intermolecular $O-H\cdots O$ hydrogen bonds link molecules into a two-dimensional supramolecular structure parallel to (001).

Related literature

For related structures, see: Pons *et al.* (2004); Yoshikawa *et al.* (2002); Qin *et al.* (2007); He *et al.* (2007).

Experimental

Crystal data

 $[Zn(C_{20}H_{12}NO_2)_2(H_2O)]\cdot H_2O$ $M_r = 457.81$ Triclinic, $P\overline{1}$ a = 9.6949 (13) Å b = 10.0054 (14) Å c = 11.9249 (17) Å $\alpha = 97.799$ (2)° $\beta = 91.533$ (2)°

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2008*a*) $T_{\rm min} = 0.594, T_{\rm max} = 0.839$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$
$wR(F^2) = 0.075$
S = 1.06
3847 reflections

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O2W-H2B\cdots O4$	0.85	1.94	2.780 (2)	172
$O2W-H2A\cdots O4^{i}$	0.85	2.02	2.849 (2)	165
$O1W - H1B \cdot \cdot \cdot O2W^{ii}$	0.84	1.80	2.638 (2)	175
$O1W-H1A\cdots O2^{iii}$	0.85	1.79	2.636 (2)	174
Symmetry codes: (i) -x + 2, -y, -z.	-x + 1, -y	y + 1, -z; (i	i) $-x + 2, -y$	+1, -z; (iii)

 $\gamma = 113.464 \ (2)^{\circ}$

Z = 2

V = 1047.1 (3) Å³

Mo $K\alpha$ radiation

 $0.48 \times 0.42 \times 0.15 \text{ mm}$

7770 measured reflections

3847 independent reflections

3410 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 1.21 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.017$

264 parameters

 $\Delta \rho_{\text{max}} = 0.47 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.29 \text{ e } \text{\AA}^{-3}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008*b*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008*b*); molecular graphics: *SHELXTL* (Sheldrick, 2008*b*); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Guangzhou Science and Technology Projects Fund (2010Y1-C371), the Guangzhou Municipal Bureau of Education Projects Fund (10 A168) and the doctoral startup fund of Guangzhou Medical College (2008 C25).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5046).

References

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
He, L., Yan, J.-B., Guo, X.-X. & Song, W.-D. (2007). Acta Cryst. E63, m1649.
Pons, J., March, R., Rius, J. & Ros, J. (2004). Inorg. Chim. Acta, 357, 3789–3792.
Qin, L., Guo, H.-F., Li, X., Ma, D.-Y. & Song, W.-D. (2007). Acta Cryst. E63, m2853.

Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122

Yoshikawa, Y., Ueda, E., Kawabe, K., Miyake, H., Takino, T., Sakurai, H. & Kojima, Y. (2002). J. Biol. Inorg. Chem. 7, 68–73.

Acta Cryst. (2011). E67, m908 [doi:10.1107/S1600536811021623]

Aquabis(5-butylpyridine-2-carboxylato)zinc monohydrate

Y.-W. Tao and Y. Wang

Comment

As known for a long time, pyridine-2-carboxylato ion and its derivatives are good chelating ligands for many transition metals(Pons, *et al.*, 2004; Yoshikawa, *et al.*, 2002; Qin *et al.*, 2007; He *et al.*, 2007). Here, we report a new zinc complex based on 5-n-butylpyridine-2-carboxylate.

The crystal structure of the title compound,(I), is shown in Fig. 1. The coordination sphere of the Zn^{II} ion should be described as a distorted square-pyramidal, in which the four basal positions are occupied by two N atoms and two O atoms from two 5-n-butylpyridine-2-carboxylato ligands, and the fifth apical site is occupied by the O atom of the coordinated solvent water molecule. The Zn(II) ion is out of the plane formed by N₂O₂ unit 0.504 (8)Å towards the Zn—O_{water} bond. The average Zn—N, Zn—O_{ligand}, and the Zn—O_{water} are 2.094, 2.043, and 2.044Å, respectively, in agreement with the corresponding distances found in other Zn complexes containing similar ligands (Qin *et al.*, 2007; He *et al.*, 2007). It was noting that the title complex was linked into a two-dimensional supermolecular structure under the help of the intermolecular O—H···O hydrogen bonds interactions.

Experimental

The title complex was prepared by the addition of a stiochiometric amount to zinc acetate dehydrate (0.054 mmol) to a hot aqueous solution (5 ml) of fusaric acid (30 mmol) which was extracted from the endophytic fungus phomopsis *sp*. from the mangrove tree on the South China Sea coast. The resulting solution was filtered, and colorless crystals were obtained by slow evaporation of a methanol-water solution (90:10 v/v) at room temperature over several days.

Refinement

All the H atoms bonded to the C atoms were placed using the HFIX commands in *SHELXL-97*, with C—H distances of 0.95, 0.98 and 0.99 Å, and were allowed for as riding atoms with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. For the H atom of the water molecule, they were found from difference Fourier maps with the O—H bond length restrained to 0.85 Å.

Figures

Fig. 1. The molecular structure of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Aquabis(5-butylpyridine-2-carboxylato)zinc monohydrate

Z = 2

F(000) = 480 $D_{\rm x} = 1.452 \ {\rm Mg \ m^{-3}}$

 $\theta = 2.3 - 27.0^{\circ}$

 $\mu = 1.21 \text{ mm}^{-1}$

Prism, colorless

 $0.48 \times 0.42 \times 0.15 \text{ mm}$

T = 293 K

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5809 reflections

Crystal data

[Zn(C₂₀H₁₂NO₂)₂(H₂O)]·H₂O $M_r = 457.81$ Triclinic, PT Hall symbol: -P 1 a = 9.6949 (13) Å *b* = 10.0054 (14) Å c = 11.9249 (17) Å $\alpha = 97.799 \ (2)^{\circ}$ $\beta = 91.533 \ (2)^{\circ}$ $\gamma = 113.464 \ (2)^{\circ}$

V = 1047.1 (3) Å³

Data collection

3847 independent reflections
3410 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.017$
$\theta_{\text{max}} = 25.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
$h = -11 \rightarrow 11$
$k = -12 \rightarrow 12$
$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.027$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.075$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0384P)^{2} + 0.5567P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3847 reflections	$(\Delta/\sigma)_{\rm max} = 0.008$
264 parameters	$\Delta \rho_{max} = 0.47 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9784 (2)	0.0833 (2)	0.17910 (17)	0.0249 (4)
C2	1.0361 (2)	0.2469 (2)	0.22551 (17)	0.0239 (4)
C3	1.1290 (3)	0.3107 (2)	0.32451 (18)	0.0311 (5)
Н3	1.1603	0.2528	0.3674	0.037*
C4	1.1761 (3)	0.4611 (2)	0.36059 (19)	0.0341 (5)
H4	1.2413	0.5071	0.4282	0.041*
C5	1.1283 (2)	0.5447 (2)	0.29835 (17)	0.0275 (4)
C6	1.0337 (2)	0.4707 (2)	0.19940 (17)	0.0250 (4)
H6	0.9991	0.5254	0.1555	0.030*
C7	1.1750 (3)	0.7081 (2)	0.33348 (18)	0.0336 (5)
H7A	1.1100	0.7396	0.2878	0.040*
H7B	1.2801	0.7601	0.3147	0.040*
C8	1.1666 (4)	0.7566 (3)	0.4578 (2)	0.0496 (7)
H8A	1.2515	0.7516	0.5025	0.059*
H8B	1.0716	0.6866	0.4823	0.059*
C9	1.1725 (4)	0.9123 (3)	0.4849 (2)	0.0544 (7)
H9A	1.0839	0.9153	0.4439	0.065*
H9B	1.1639	0.9341	0.5673	0.065*
C10	1.3102 (4)	1.0292 (3)	0.4550 (3)	0.0681 (9)
H10A	1.3987	1.0303	0.4976	0.102*
H10B	1.3044	1.1251	0.4743	0.102*
H10C	1.3193	1.0100	0.3734	0.102*
C11	0.6412 (2)	0.2796 (2)	-0.07353 (16)	0.0238 (4)
C12	0.5820 (2)	0.1149 (2)	-0.11734 (16)	0.0225 (4)
C13	0.4469 (2)	0.0367 (2)	-0.18239 (18)	0.0285 (5)
H13	0.3866	0.0852	-0.2049	0.034*
C14	0.4004 (2)	-0.1145 (2)	-0.21448 (18)	0.0303 (5)
H14	0.3074	-0.1704	-0.2593	0.036*
C15	0.4900 (3)	-0.1841 (2)	-0.18108 (17)	0.0281 (5)
C16	0.6254 (2)	-0.0962 (2)	-0.11735 (17)	0.0264 (4)
H16	0.6890	-0.1414	-0.0949	0.032*
C17	0.4419 (3)	-0.3486 (2)	-0.21017 (18)	0.0348 (5)
H17A	0.5116	-0.3770	-0.1667	0.042*
H17B	0.3397	-0.3986	-0.1853	0.042*
C18	0.4389 (4)	-0.4036 (3)	-0.3335 (2)	0.0471 (7)
H18A	0.5387	-0.3483	-0.3602	0.057*
H18B	0.3629	-0.3829	-0.3767	0.057*
C19	0.4019 (3)	-0.5685 (3)	-0.3597 (2)	0.0483 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H19A	0.4110	-0.5946	-0.4414	0.058*
H19B	0.4777	-0.5890	-0.3161	0.058*
C20	0.2495 (4)	-0.6646 (3)	-0.3326 (3)	0.0684 (10)
H20A	0.2403	-0.6422	-0.2512	0.103*
H20B	0.2340	-0.7682	-0.3520	0.103*
H20C	0.1733	-0.6469	-0.3765	0.103*
N1	0.98977 (19)	0.32660 (18)	0.16371 (14)	0.0230 (4)
N2	0.67075 (19)	0.04994 (18)	-0.08590 (13)	0.0228 (3)
01	0.88860 (16)	0.03799 (15)	0.09036 (12)	0.0277 (3)
O2	1.02181 (19)	0.00693 (17)	0.23255 (13)	0.0351 (4)
O3	0.76689 (16)	0.33710 (15)	-0.01438 (12)	0.0262 (3)
O4	0.56258 (16)	0.34586 (16)	-0.09763 (13)	0.0319 (3)
O1W	1.02425 (16)	0.24272 (15)	-0.09978 (12)	0.0253 (3)
H1A	1.0153	0.1655	-0.1447	0.038*
H1B	1.1118	0.2841	-0.0657	0.038*
O2W	0.69815 (17)	0.64141 (17)	0.00070 (14)	0.0364 (4)
H2A	0.6306	0.6516	0.0409	0.055*
H2B	0.6653	0.5519	-0.0315	0.055*
Zn1	0.86873 (3)	0.19830 (2)	0.010473 (19)	0.02289 (9)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0274 (11)	0.0232 (10)	0.0270 (10)	0.0130 (9)	0.0052 (9)	0.0040 (8)
C2	0.0226 (10)	0.0245 (10)	0.0262 (10)	0.0113 (9)	0.0042 (8)	0.0036 (8)
C3	0.0358 (12)	0.0285 (11)	0.0303 (11)	0.0154 (10)	-0.0039 (9)	0.0032 (9)
C4	0.0394 (13)	0.0308 (12)	0.0278 (11)	0.0121 (10)	-0.0068 (10)	-0.0004 (9)
C5	0.0316 (11)	0.0231 (10)	0.0253 (10)	0.0090 (9)	0.0039 (9)	0.0015 (8)
C6	0.0281 (11)	0.0225 (10)	0.0252 (10)	0.0110 (9)	0.0035 (8)	0.0035 (8)
C7	0.0424 (13)	0.0221 (11)	0.0295 (11)	0.0072 (10)	-0.0006 (10)	0.0013 (9)
C8	0.085 (2)	0.0331 (13)	0.0338 (13)	0.0273 (14)	0.0130 (13)	0.0042 (10)
C9	0.085 (2)	0.0381 (15)	0.0421 (15)	0.0281 (15)	0.0152 (14)	0.0021 (11)
C10	0.073 (2)	0.0339 (15)	0.089 (2)	0.0174 (15)	0.0115 (18)	-0.0066 (15)
C11	0.0247 (10)	0.0241 (10)	0.0238 (10)	0.0115 (9)	0.0061 (8)	0.0019 (8)
C12	0.0224 (10)	0.0227 (10)	0.0220 (10)	0.0088 (8)	0.0053 (8)	0.0025 (8)
C13	0.0252 (11)	0.0319 (12)	0.0285 (11)	0.0128 (9)	0.0025 (9)	0.0013 (9)
C14	0.0246 (11)	0.0301 (11)	0.0272 (11)	0.0037 (9)	0.0008 (9)	-0.0017 (9)
C15	0.0349 (12)	0.0232 (10)	0.0208 (10)	0.0065 (9)	0.0046 (9)	0.0014 (8)
C16	0.0320 (11)	0.0230 (10)	0.0236 (10)	0.0105 (9)	0.0039 (9)	0.0039 (8)
C17	0.0450 (14)	0.0218 (11)	0.0283 (11)	0.0055 (10)	-0.0014 (10)	0.0005 (9)
C18	0.077 (2)	0.0301 (13)	0.0324 (13)	0.0203 (13)	0.0135 (12)	0.0027 (10)
C19	0.0670 (18)	0.0298 (13)	0.0418 (14)	0.0143 (13)	0.0186 (13)	-0.0012 (10)
C20	0.068 (2)	0.0414 (16)	0.069 (2)	0.0008 (15)	0.0174 (17)	-0.0152 (14)
N1	0.0237 (9)	0.0204 (8)	0.0241 (8)	0.0085 (7)	0.0012 (7)	0.0018 (7)
N2	0.0255 (9)	0.0207 (8)	0.0210 (8)	0.0085 (7)	0.0021 (7)	0.0018 (6)
01	0.0304 (8)	0.0211 (7)	0.0310 (8)	0.0107 (6)	-0.0030 (6)	0.0020 (6)
O2	0.0506 (10)	0.0279 (8)	0.0316 (8)	0.0223 (8)	-0.0051 (7)	0.0020 (6)
O3	0.0234 (7)	0.0208 (7)	0.0327 (8)	0.0098 (6)	-0.0020 (6)	-0.0023 (6)

O4 O1W	0.0277 (8) 0.0243 (7)	0.0270 (8) 0.0229 (7)	0.0431 (9) 0.0296 (7)	0.0161 (7) 0.0116 (6)	-0.0029 (7) 0.0011 (6)	-0.0016 (7) 0.0012 (6)
O2W	0.0281 (8)	0.0241 (8)	0.0546 (10)	0.0112 (7)	-0.0004 (7)	-0.0025 (7)
Zn1	0.02298 (14)	0.01954 (13)	0.02499 (14)	0.00872 (10)	-0.00164 (9)	0.00013 (9)
Geometric paran	neters (Å, °)					
C1-02		1 241 (2)	C13—	-C14	1 38	(3)
C1 - 01		1.241 (2)	C13	-H13	0.95	500
C1-C2		1.519(3)	C14-	-C15	1 39	1 (3)
C2—N1		1.345(3)	C14-	-H14	0.95	500
C^2		1.376 (3)	C15—	-C16	1 38	s6 (3)
$C_{2} = C_{3}$		1 388 (3)	C15	-C17	1.50	18 (3)
С3—Н3		0.9500	C16-	-N2	1.30	(3)
C4-C5		1 387 (3)	C16	-H16	0.95	2 (<i>3</i>)
С4—Н4		0.9500	C10	-C18	1 49	(3)
C5-C6		1 395 (3)	C17	-H17A	0.90	00
$C_{5} = C_{7}$		1.595 (3)	C17-	-H17R	0.99	00
C5C7		1.300(3)	C18-	-1117D -C10	1.52	8 (3)
С6—Н6		0.9500	C18-		0.90	28 (3) 200
C7-C8		1 511 (3)	C18	-H18B	0.99	00
С7—Н7А		0.9900	C10	-C20	1.48	30 (4)
C7—H7B		0.9900	C19	-H19A	0.90	00
C8-C9		1 525 (3)	C19	-H19R	0.99	00
C8—H8A		0.9900	C20—	-H20A	89.0	00
C8—H8B		0.9900	C20	-H20B	99.0 89.0	:00
C9-C10		1 474 (4)	C20	-H20C	99.0 89.0	300
С9—Н9А		0.9900	N1—7	Zn1	2.10	07 (16)
C9—H9B		0.9900	N2	Zn1	2.08	(17)
C10—H10A		0.9800	01-7	Zn1	2.04	16 (14)
C10—H10B		0.9800	03-7	Zn1	2.04	43 (14)
C10—H10C		0.9800	01W-	-Zn1	1.98	25 (14)
C11—04		1 243 (2)	01W-	-H1A	0.84	.98
C11-O3		1.264 (2)	O1W-	-H1B	0.84	40
C11—C12		1.521 (3)	O2W-	-H2A	0.85	14
C12—N2		1.341 (3)	O2W-	-H2B	0.85	10
C12—C13		1.377 (3)				
02 - C1 - 01		126 36 (19)	C15—	-C14—H14	120	0
02 - C1 - C2		117 37 (18)	C16—	-C15-C14	117	25 (19)
01 - C1 - C2		116 27 (17)	C16—	-C15-C17	120	7 (2)
N1-C2-C3		121.57 (19)	C14—	-C15—C17	122	0(2)
N1—C2—C1		115.64 (17)	N2—0	C16—C15	122	.97 (19)
C3—C2—C1		122.79 (18)	N2—0	С16—Н16	118	5
C2—C3—C4		118.9 (2)	C15—	-C16—H16	118.	5
С2—С3—Н3		120.6	C18—	-C17—C15	114.	50 (19)
C4—C3—H3		120.6	C18—	-C17—H17A	108	.6
C5—C4—C3		120.3 (2)	C15—	-C17—H17A	108	.6
С5—С4—Н4		119.9	C18—	-C17—H17B	108	.6
C3—C4—H4		119.9	C15—	-C17—H17B	108	.6

C4—C5—C6	116.93 (19)	H17A—C17—H17B	107.6
C4—C5—C7	122.71 (19)	C17—C18—C19	113.5 (2)
C6—C5—C7	120.36 (19)	C17—C18—H18A	108.9
N1—C6—C5	122.96 (19)	C19—C18—H18A	108.9
N1—C6—H6	118.5	C17—C18—H18B	108.9
С5—С6—Н6	118.5	C19—C18—H18B	108.9
С5—С7—С8	115.23 (19)	H18A—C18—H18B	107.7
С5—С7—Н7А	108.5	C20—C19—C18	114.3 (2)
С8—С7—Н7А	108.5	С20—С19—Н19А	108.7
С5—С7—Н7В	108.5	С18—С19—Н19А	108.7
С8—С7—Н7В	108.5	C20—C19—H19B	108.7
H7A—C7—H7B	107.5	С18—С19—Н19В	108.7
С7—С8—С9	113.9 (2)	H19A—C19—H19B	107.6
С7—С8—Н8А	108.8	C19—C20—H20A	109.5
С9—С8—Н8А	108.8	C19—C20—H20B	109.5
С7—С8—Н8В	108.8	H20A—C20—H20B	109.5
С9—С8—Н8В	108.8	С19—С20—Н20С	109.5
H8A—C8—H8B	107.7	H20A-C20-H20C	109.5
C10—C9—C8	114.8 (3)	H20B-C20-H20C	109.5
С10—С9—Н9А	108.6	C6—N1—C2	119.38 (17)
С8—С9—Н9А	108.6	C6—N1—Zn1	129.26 (14)
С10—С9—Н9В	108.6	C2—N1—Zn1	111.10 (13)
С8—С9—Н9В	108.6	C12—N2—C16	119.00 (17)
Н9А—С9—Н9В	107.6	C12—N2—Zn1	112.83 (13)
С9—С10—Н10А	109.5	C16—N2—Zn1	128.17 (14)
С9—С10—Н10В	109.5	C1—O1—Zn1	115.66 (13)
H10A-C10-H10B	109.5	C11—O3—Zn1	116.22 (12)
C9—C10—H10C	109.5	Zn1—O1W—H1A	111.6
H10A-C10-H10C	109.5	Zn1—O1W—H1B	110.8
H10B-C10-H10C	109.5	H1A—O1W—H1B	110.4
O4—C11—O3	125.56 (18)	H2A—O2W—H2B	108.2
O4—C11—C12	117.92 (17)	O1W—Zn1—O1	106.09 (6)
O3—C11—C12	116.52 (17)	O1W—Zn1—O3	102.80 (6)
N2—C12—C13	122.02 (18)	O1—Zn1—O3	151.11 (6)
N2—C12—C11	114.71 (17)	O1W—Zn1—N2	104.39 (6)
C13—C12—C11	123.26 (18)	O1—Zn1—N2	92.68 (6)
C12—C13—C14	118.69 (19)	O3—Zn1—N2	79.70 (6)
C12—C13—H13	120.7	O1W—Zn1—N1	103.25 (6)
C14—C13—H13	120.7	O1—Zn1—N1	79.91 (6)
C13—C14—C15	120.04 (19)	O3—Zn1—N1	93.96 (6)
C13—C14—H14	120.0	N2—Zn1—N1	152.36 (6)
O2-C1-C2-N1	178.32 (18)	C1—C2—N1—Zn1	-6.2 (2)
O1-C1-C2-N1	-2.8 (3)	C13-C12-N2-C16	-1.0 (3)
O2—C1—C2—C3	-2.0 (3)	C11—C12—N2—C16	177.81 (17)
O1—C1—C2—C3	176.9 (2)	C13—C12—N2—Zn1	179.31 (15)
N1—C2—C3—C4	-0.3 (3)	C11—C12—N2—Zn1	-1.9 (2)
C1—C2—C3—C4	-179.9 (2)	C15—C16—N2—C12	-0.2 (3)
C2—C3—C4—C5	0.8 (3)	C15—C16—N2—Zn1	179.46 (15)
C3—C4—C5—C6	-0.5 (3)	O2—C1—O1—Zn1	-170.40 (17)

C3—C4—C5—C7	179.7 (2)	C2-C1-O1-Zn1	10.8 (2)
C4—C5—C6—N1	-0.3 (3)	O4—C11—O3—Zn1	179.89 (16)
C7—C5—C6—N1	179.44 (19)	C12—C11—O3—Zn1	0.5 (2)
C4—C5—C7—C8	-45.1 (3)	C1—O1—Zn1—O1W	89.95 (15)
C6—C5—C7—C8	135.1 (2)	C1—O1—Zn1—O3	-90.86 (18)
C5—C7—C8—C9	-164.3 (2)	C1—O1—Zn1—N2	-164.24 (14)
C7—C8—C9—C10	-59.7 (4)	C1—O1—Zn1—N1	-11.06 (14)
O4—C11—C12—N2	-178.46 (18)	C11—O3—Zn1—O1W	101.39 (14)
O3—C11—C12—N2	0.9 (3)	C11—O3—Zn1—O1	-77.81 (18)
O4—C11—C12—C13	0.4 (3)	C11—O3—Zn1—N2	-1.18 (14)
O3—C11—C12—C13	179.76 (19)	C11—O3—Zn1—N1	-154.05 (14)
N2-C12-C13-C14	1.1 (3)	C12—N2—Zn1—O1W	-99.05 (13)
C11-C12-C13-C14	-177.59 (18)	C16—N2—Zn1—O1W	81.32 (17)
C12-C13-C14-C15	-0.1 (3)	C12—N2—Zn1—O1	153.59 (13)
C13-C14-C15-C16	-1.0 (3)	C16—N2—Zn1—O1	-26.04 (17)
C13-C14-C15-C17	177.75 (19)	C12—N2—Zn1—O3	1.66 (13)
C14—C15—C16—N2	1.1 (3)	C16—N2—Zn1—O3	-177.97 (17)
C17—C15—C16—N2	-177.61 (19)	C12—N2—Zn1—N1	80.37 (19)
C16-C15-C17-C18	-112.4 (3)	C16—N2—Zn1—N1	-99.3 (2)
C14—C15—C17—C18	68.9 (3)	C6—N1—Zn1—O1W	78.55 (18)
C15-C17-C18-C19	175.5 (2)	C2—N1—Zn1—O1W	-95.41 (14)
C17—C18—C19—C20	63.4 (4)	C6—N1—Zn1—O1	-177.13 (18)
C5—C6—N1—C2	0.9 (3)	C2—N1—Zn1—O1	8.90 (13)
C5—C6—N1—Zn1	-172.66 (15)	C6—N1—Zn1—O3	-25.60 (18)
C3—C2—N1—C6	-0.6 (3)	C2—N1—Zn1—O3	160.44 (13)
C1—C2—N1—C6	179.13 (17)	C6—N1—Zn1—N2	-100.9 (2)
C3—C2—N1—Zn1	174.08 (16)	C2—N1—Zn1—N2	85.17 (19)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!\!\cdot\!\!\cdot\!\!\cdot$	
O2W—H2B···O4	0.85	1.94	2.780 (2)	172	
O2W—H2A···O4 ⁱ	0.85	2.02	2.849 (2)	165	
O1W—H1B···O2W ⁱⁱ	0.84	1.80	2.638 (2)	175	
O1W—H1A····O2 ⁱⁱⁱ	0.85	1.79	2.636 (2)	174	
Symmetry codes: (i) $-x+1$, $-y+1$, $-z$; (ii) $-x+2$, $-y+1$, $-z$; (iii) $-x+2$, $-y$, $-z$.					

